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Problem 2.5

Find the electric field a distance z above the center of a circular loop of radius r (Fig. 2.9) that
carries a uniform line charge λ.

Solution

Start by drawing a schematic for some point on the circular loop.

The formula for the electric field from a continuous distribution of charge along a line is
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where the integral is taken over the line where the charge exists. Note that r is the position
vector to where we want to know the electric field, r′ is the position vector to the point we chose
on the line, and r = |r− r′| is the distance from the point we chose on the line to where we want
to know the electric field.
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The loop is circular, so the appropriate parameterization is done with polar coordinates.

r′ = r⟨cos θ′, sin θ′, 0⟩, 0 ≤ θ′ ≤ 2π

Consequently, the electric field at r = ⟨0, 0, z⟩ is
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Simplify the integrand and then integrate the components.
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Therefore, the electric field at r = ⟨0, 0, z⟩ is
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Observe that
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In order to see what happens if z ≫ r, rewrite the formula so that each term is a ratio of r and z,
z being in the denominator, and use the binomial theorem.
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Continue the simplification.
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If z ≫ r, then r2/z2 and all higher-order terms are so much smaller than 1 that they can be
neglected.
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The lesson is that far away from the circular loop the electric field is the same as if it were a point
charge.
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