Problem 2.5

Find the electric field a distance z above the center of a circular loop of radius r (Fig. 2.9) that carries a uniform line charge λ.

Fig. 2.9

Solution

Start by drawing a schematic for some point on the circular loop.

The formula for the electric field from a continuous distribution of charge along a line is

$$
\begin{aligned}
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\lambda\left(\mathbf{r}^{\prime}\right)}{\boldsymbol{z}^{2}} \hat{\boldsymbol{z}} d l^{\prime} & =\frac{1}{4 \pi \epsilon_{0}} \int \frac{\lambda\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}}\left(\frac{\mathbf{r}-\mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right) d l^{\prime} \\
& =\frac{1}{4 \pi \epsilon_{0}} \int \frac{\lambda\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) d l^{\prime},
\end{aligned}
$$

where the integral is taken over the line where the charge exists. Note that \mathbf{r} is the position vector to where we want to know the electric field, \mathbf{r}^{\prime} is the position vector to the point we chose on the line, and $\boldsymbol{z}=\left|\mathbf{r}-\mathbf{r}^{\prime}\right|$ is the distance from the point we chose on the line to where we want to know the electric field.

$$
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \int_{x_{0}^{2}+y_{0}^{2}=r^{2}} \frac{\lambda}{\left[\sqrt{\left(0-x^{\prime}\right)^{2}+\left(0-y^{\prime}\right)^{2}+(z-0)^{2}}\right]^{3}}\left(\langle 0,0, z\rangle-\left\langle x^{\prime}, y^{\prime}, 0\right\rangle\right) d s^{\prime}
$$

The loop is circular, so the appropriate parameterization is done with polar coordinates.

$$
\mathbf{r}^{\prime}=r\left\langle\cos \theta^{\prime}, \sin \theta^{\prime}, 0\right\rangle, \quad 0 \leq \theta^{\prime} \leq 2 \pi
$$

Consequently, the electric field at $\mathbf{r}=\langle 0,0, z\rangle$ is

$$
\mathbf{E}=\frac{\lambda}{4 \pi \epsilon_{0}} \int_{0}^{2 \pi} \frac{1}{\left[\sqrt{\left(0-r \cos \theta^{\prime}\right)^{2}+\left(0-r \sin \theta^{\prime}\right)^{2}+(z-0)^{2}}\right]^{3}}\left(\langle 0,0, z\rangle-r\left\langle\cos \theta^{\prime}, \sin \theta^{\prime}, 0\right\rangle\right)\left(r d \theta^{\prime}\right)
$$

Simplify the integrand and then integrate the components.

$$
\begin{aligned}
\mathbf{E} & =\frac{\lambda}{4 \pi \epsilon_{0}} \int_{0}^{2 \pi} \frac{1}{\left(r^{2}+z^{2}\right)^{3 / 2}}\left\langle-r \cos \theta^{\prime},-r \sin \theta^{\prime}, z\right\rangle\left(r d \theta^{\prime}\right) \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \frac{r}{\left(r^{2}+z^{2}\right)^{3 / 2}}\left\langle-r \int_{0}^{2 \pi} \cos \theta^{\prime} d \theta^{\prime},-r \int_{0}^{2 \pi} \sin \theta^{\prime} d \theta^{\prime}, z \int_{0}^{2 \pi} d \theta^{\prime}\right\rangle \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \frac{r}{\left(r^{2}+z^{2}\right)^{3 / 2}}\langle-r(0),-r(0), z(2 \pi)\rangle \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \frac{r}{\left(r^{2}+z^{2}\right)^{3 / 2}}\langle 0,0,2 \pi z\rangle \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \frac{2 \pi r z}{\left(r^{2}+z^{2}\right)^{3 / 2}}\langle 0,0,1\rangle
\end{aligned}
$$

Therefore, the electric field at $\mathbf{r}=\langle 0,0, z\rangle$ is

$$
\mathbf{E}=\frac{\lambda}{2 \epsilon_{0}} \frac{r z}{\left(r^{2}+z^{2}\right)^{3 / 2}} \hat{\mathbf{z}} .
$$

Observe that

$$
\begin{aligned}
& \lim _{r \rightarrow 0} \mathbf{E}=\lim _{r \rightarrow 0} \frac{\lambda}{2 \epsilon_{0}} \frac{r z}{\left(r^{2}+z^{2}\right)^{3 / 2}} \hat{\mathbf{z}}=\frac{\lambda}{2 \epsilon_{0}} \frac{(0) z}{\left(0^{2}+z^{2}\right)^{3 / 2}} \hat{\mathbf{z}}=\mathbf{0} \\
& \lim _{z \rightarrow 0} \mathbf{E}=\lim _{z \rightarrow 0} \frac{\lambda}{2 \epsilon_{0}} \frac{r z}{\left(r^{2}+z^{2}\right)^{3 / 2}} \hat{\mathbf{z}}=\frac{\lambda}{2 \epsilon_{0}} \frac{r(0)}{\left(r^{2}+0^{2}\right)^{3 / 2}} \hat{\mathbf{z}}=\mathbf{0} .
\end{aligned}
$$

In order to see what happens if $z \gg r$, rewrite the formula so that each term is a ratio of r and z, z being in the denominator, and use the binomial theorem.

$$
\begin{aligned}
\mathbf{E} & =\frac{\lambda}{2 \epsilon_{0}} \frac{r z}{\left[z^{2}\left(\frac{r^{2}}{z^{2}}+1\right)\right]^{3 / 2}} \hat{\mathbf{z}} \\
& =\frac{\lambda}{2 \epsilon_{0}} \frac{r z}{z^{3}\left(\frac{r^{2}}{z^{2}}+1\right)^{3 / 2}} \hat{\mathbf{z}} \\
& =\frac{\lambda}{2 \epsilon_{0}} \frac{r}{z^{2}}\left(1+\frac{r^{2}}{z^{2}}\right)^{-3 / 2} \hat{\mathbf{z}} \\
& =\frac{\lambda}{2 \epsilon_{0}} \frac{r}{z^{2}}\left[\sum_{k=0}^{\infty} \frac{\Gamma\left(-\frac{3}{2}+1\right)}{\Gamma(k+1) \Gamma\left(-\frac{3}{2}-k+1\right)}\left(\frac{r^{2}}{z^{2}}\right)^{k}\right] \hat{\mathbf{z}} \\
& =\frac{\lambda}{2 \epsilon_{0}} \frac{r}{z^{2}}\left[\sum_{k=0}^{\infty} \frac{\Gamma\left(-\frac{1}{2}\right)}{\Gamma(k+1) \Gamma\left(-\frac{1}{2}-k\right)}\left(\frac{r}{z}\right)^{2 k}\right] \hat{\mathbf{z}} \\
& =\frac{\lambda}{2 \epsilon_{0}} \frac{r}{z^{2}}\left[\frac{\Gamma\left(-\frac{1}{2}\right)}{\Gamma(1) \Gamma\left(-\frac{1}{2}\right)}\left(\frac{r}{z}\right)^{0}+\frac{\Gamma\left(-\frac{1}{2}\right)}{\Gamma(2) \Gamma\left(-\frac{3}{2}\right)}\left(\frac{r}{z}\right)^{2}+\frac{\Gamma\left(-\frac{1}{2}\right)}{\Gamma(3) \Gamma\left(-\frac{5}{2}\right)}\left(\frac{r}{z}\right)^{4}+\cdots\right] \hat{\mathbf{z}}
\end{aligned}
$$

Continue the simplification.

$$
\begin{aligned}
\mathbf{E} & =\frac{\lambda}{2 \epsilon_{0}} \frac{r}{z^{2}}\left[1-\frac{3}{2}\left(\frac{r}{z}\right)^{2}+\frac{15}{8}\left(\frac{r}{z}\right)^{4}-\cdots\right] \hat{\mathbf{z}} \\
& =\frac{Q}{2(2 \pi) \epsilon_{0}} \frac{1}{z^{2}}\left(1-\frac{3 r^{2}}{2 z^{2}}+\frac{15 r^{4}}{8 z^{4}}-\cdots\right) \hat{\mathbf{z}}
\end{aligned}
$$

If $z \gg r$, then r^{2} / z^{2} and all higher-order terms are so much smaller than 1 that they can be neglected.

$$
\mathbf{E} \approx \frac{Q}{2(2 \pi) \epsilon_{0}} \frac{1}{z^{2}} \hat{\mathbf{z}}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{z^{2}} \hat{\mathbf{z}}
$$

The lesson is that far away from the circular loop the electric field is the same as if it were a point charge.

